skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Braha, Julian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many critical codebases are written in C, and most of them use preprocessor directives to encode variability, effectively encoding software product lines. These preprocessor directives, however, challenge any static code analysis. SPLlift, a previously presented approach for analyzing software product lines, is limited to Java programs that use a rather simple feature encoding and to analysis problems with a finite and ideally small domain. Other approaches that allow the analysis of real-world C software product lines use special-purpose analyses, preventing the reuse of existing analysis infrastructures and ignoring the progress made by the static analysis community. This work presents VarAlyzer , a novel static analysis approach for software product lines. VarAlyzer first transforms preprocessor constructs to plain C while preserving their variability and semantics. It then solves any given distributive analysis problem on transformed product lines in a variability-aware manner. VarAlyzer ’s analysis results are annotated with feature constraints that encode in which configurations each result holds. Our experiments with 95 compilation units of OpenSSL show that applying VarAlyzer enables one to conduct inter-procedural, flow-, field- and context-sensitive data-flow analyses on entire product lines for the first time, outperforming the product-based approach for highly-configurable systems. 
    more » « less
  2. Highly-configurable software underpins much of our computing infrastructure. It enables extensive reuse, but opens the door to broken configuration specifications. The configuration specification language, Kconfig, is designed to prevent invalid configurations of the Linux kernel from being built. However, the astronomical size of the configuration space for Linux makes finding specification bugs difficult by hand or with random testing. In this paper, we introduce a software model checking framework for building Kconfig static analysis tools. We develop a formal semantics of the Kconfig language and implement the semantics in a symbolic evaluator called kclause that models Kconfig behavior as logical formulas. We then design and implement a bug finder, called kismet, that takes kclause models and leverages automated theorem proving to find unmet dependency bugs. kismet is evaluated for its precision, performance, and impact on kernel development for a recent version of Linux, which has over 140,000 lines of Kconfig across 28 architecture-specific specifications. Our evaluation finds 781 bugs (151 when considering sharing among Kconfig specifications) with 100% precision, spending between 37 and 90 minutes for each Kconfig specification, although it misses some bugs due to underapproximation. Compared to random testing, kismet finds substantially more true positive bugs in a fraction of the time. 
    more » « less
  3. Artifact from "Finding Broken Linux Configuration Specifications by Statically Analyzing the Kconfig Language" 
    more » « less